Information Systems, Volume 84, September 2019, Pages 255-264
Keywords: Predictive process monitoring; Inter-case predictions; Knowledge-driven encoding; Data-driven encoding
Abstract
Predictive process monitoring (PPM) is a research area that focuses on predicting measures of interest (e.g., the completion time) for running cases based on event logs. State-of-the-art PPM techniques only consider intra-case information that comes from the case whose measures of interest one wishes to predict. However, in many systems, the outcome of a running case depends on the interplay of all cases that are being executed concurrently, or can be derived from the characteristics of cases that are executed in the same period of time. For example, in many situations, running cases compete over scarce resources, and the completion time of a running case can be derived from the number of similar cases running concurrently. In this work, we present a general framework for feature encoding that relies on a bi-dimensional state space representation. The first dimension corresponds to intra-case dependencies and utilizes existing feature encoding techniques. The second dimension encodes inter-case features using two approaches: (1) a knowledge-driven encoding (KDE), which assumes prior knowledge on case types, and (2) a data-driven encoding (DDE), which automatically identifies case types from data using case proximity metrics. Both approaches partition the event log into sets of cases that share common characteristics, and derive features according to these commonalities. We demonstrate the usefulness of the proposed framework with an empirical evaluation carried out against two real-life datasets coming from an outpatient hospital process and a manufacturing process.
ACM/IMS Transcations on Data Science, May 2020
Abstract
Recognising patterns that correlate multiple events over time becomes increasingly important in applications that exploit the Internet of Things, reaching from urban transportation, through surveillance monitoring to business workflows. In many real-world scenarios, however, timestamps of events may be erroneously recorded and events may be dropped from a stream due to network failures or load shedding policies. In this work, we present SimpMatch, a novel simplex-based algorithm for probabilistic evaluation of event queries using constraints over event orderings in a stream. Our approach avoids learning probability distributions for time-points or occurrence intervals. Instead, we employ the abstraction of segmented intervals and compute the probability of a sequence of such segments using the notion of order statistics. The algorithm runs in linear time to the number of lost events, and shows high accuracy, yielding exact results if event generation is based on a Poisson process and providing a good approximation otherwise. We demonstrate empirically that SimpMatch enables efficient and effective reasoning over event streams, outperforming state-of-the-art methods for probabilistic evaluation of event queries by up to two orders of magnitude.
Information Systems, Volume 84, September 2019, Pages 240-254
Keywords: Temporal network representation; Allen’s algebra; Process discovery; Inductive mining; Congestion learning
Abstract
Analysing performance of business processes is an important vehicle to improve their operation. Specifically, an accurate assessment of sojourn times and remaining times enables bottleneck analysis and resource planning. Recently, methods to create respective performance models from event logs have been proposed. These works have several limitations, though: They either consider control-flow and performance information separately, or rely on an ad-hoc selection of temporal relations between events. In this paper, we introduce the Temporal Network Representation (TNR) of a log. It is based on Allen’s interval algebra, comprises the pairwise temporal relations for activity executions, and potentially incorporates the context in which these relations have been observed. We demonstrate the usefulness of the TNR for detecting (unrecorded) delays and for probabilistic mining of variants when modelling the performance of a process. In order to compare different models from the performance perspective, we further develop a framework for measuring performance fitness. Under this framework, TNR-based process discovery is guaranteed to dominate existing techniques in measuring performance characteristics of a process. In addition, we show how contextual information in terms of the congestion levels of the process can be mined in order to further improve capabilities for performance analysis. To illustrate the practical value of the proposed models, we evaluate our approaches with three real-life datasets. Our experiments show that the TNR yields an improvement in performance fitness over state-of-the-art algorithms, while congestion learning is able to accurately reconstruct congestion levels from event data.
Journal of Data and Information Quality, Volume 9(4), November 2018, Pages 18:1-18:5
Keywords: Process mining, Queue mining
Journal of Intelligent Information Systems, Volume 51(2), 2018, Pages 367-388
Keywords: Reusable elements, Mining, Complex patterns, Graceful degradation
Abstract
Applications targeting smart cities tackle common challenges, however solutions are seldom portable from one city to another due to the heterogeneity of smart city ecosystems. A major obstacle involves the differences in the levels of available information. In this work, we present REMI, which is a mining framework that handles varying degrees of information availability by providing a meta-solution to missing data. The framework core concept is the REMI layered stack architecture, offering two complementary approaches to dealing with missing information, namely data enrichment (DARE) and graceful degradation (GRADE). DARE aims at inference of missing information levels, while GRADE attempts to mine the patterns using only the existing data.We show that REMI provides multiple ways for re-usability, while being fault tolerant and enabling incremental development. One may apply the architecture to different problem instantiations within the same domain, or deploy it across various domains. Furthermore, we introduce the other three components of the REMI framework backing the layered stack. To support decision making in this framework, we show a mapping of REMI into an optimization problem (OTP) that balances the trade-off between three costs: inaccuracies in inference of missing data (DARE), errors when using less information (GRADE), and gathering of additional data. Further, we provide an experimental evaluation of REMI using real-world transportation data coming from two European smart cities, namely Dublin and Warsaw.
Information Systems, Volume 78, 2018, Pages 96 - 111
Keywords: Generalised stochasti Petri nets; Model simplification; Folding; Elimination; Aggregation; Process mining
Abstract
Operational process models such as generalised stochastic Petri nets (GSPNs) are useful when answering performance questions about business processes (e.g. ‘how long will it take for a case to finish?’). Recently, methods for process mining have been developed to discover and enrich operational models based on a log of recorded executions of processes, which enables evidence-based process analysis. To avoid a bias due to infrequent execution paths, discovery algorithms strive for a balance between over-fitting and under-fitting regarding the originating log. However, state-of-the-art discovery algorithms address this balance solely for the control-flow dimension, neglecting the impact of their design choices in terms of performance measures. In this work, we thus offer a technique for controlled performance-driven model reduction of GSPNs, using structural simplification rules, namely foldings. We propose a set of foldings that aggregate or eliminate performance information. We further prove the soundness of these foldings in terms of stability preservation and provide bounds on the error that they introduce with respect to the original model. Furthermore, we show how to find an optimal sequence of simplification rules, such that their application yields a minimal model under a given error budget for performance estimation. We evaluate the approach with two real-world datasets from the healthcare and telecommunication domains, showing that model simplification indeed enables a controlled reduction of model size, while preserving performance metrics with respect to the original model. Moreover, we show that aggregation dominates elimination when abstracting performance models by preventing under-fitting due to information loss.
Information Systems, Volume 64, June 2017, Pages 266-280
Keywords: Traveling time prediction; Queue mining; Machine learning
Abstract
Urban mobility impacts urban life to a great extent. To enhance urban mobility, much research was invested in traveling time prediction: given an origin and destination, provide a passenger with an accurate estimation of how long a journey lasts. In this work, we investigate a novel combination of methods from Queueing Theory and Machine Learning in the prediction process. We propose a prediction engine that, given a scheduled bus journey (route) and a ‘source/destination’ pair, provides an estimate for the traveling time, while considering both historical data and real-time streams of information that are transmitted by buses. We propose a model that uses natural segmentation of the data according to bus stops and a set of predictors, some use learning while others are learning-free, to compute traveling time. Our empirical evaluation, using bus data that comes from the bus network in the city of Dublin, demonstrates that the snapshot principle, taken from Queueing Theory, works well yet suffers from outliers. To overcome the outliers problem, we use Machine Learning techniques as a regulator that assists in identifying outliers and propose prediction based on historical data.
Information Systems, Volume 62, December 2016, Pages 185-206
Keywords: Scheduled processes; Conformance checking; Process improvement; Queueing networks; Process mining; Scheduling; Statistical inference
Abstract
Service processes, for example in transportation, telecommunications or the health sector, are the backbone of today׳s economies. Conceptual models of service processes enable operational analysis that supports, e.g., resource provisioning or delay prediction. In the presence of event logs containing recorded traces of process execution, such operational models can be mined automatically.
In this work, we target the analysis of resource-driven, scheduled processes based on event logs. We focus on processes for which there exists a pre-defined assignment of activity instances to resources that execute activities. Specifically, we approach the questions of conformance checking (how to assess the conformance of the schedule and the actual process execution) and performance improvement (how to improve the operational process performance). The first question is addressed based on a queueing network for both the schedule and the actual process execution. Based on these models, we detect operational deviations and then apply statistical inference and similarity measures to validate the scheduling assumptions, thereby identifying root-causes for these deviations. These results are the starting point for our technique to improve the operational performance. It suggests adaptations of the scheduling policy of the service process to decrease the tardiness (non-punctuality) and lower the flow time. We demonstrate the value of our approach based on a real-world dataset comprising clinical pathways of an outpatient clinic that have been recorded by a real-time location system (RTLS). Our results indicate that the presented technique enables localization of operational bottlenecks along with their root-causes, while our improvement technique yields a decrease in median tardiness and flow time by more than 20%.
Information Systems, Volume 53, October–November 2015, Pages 278–295
Keywords: Delay prediction; Process mining; Queueing theory; Queue mining
Abstract
Information systems have been widely adopted to support service processes in various domains, e.g., in the telecommunication, finance, and health sectors. Information recorded by systems during the operation of these processes provides an angle for operational process analysis, commonly referred to as process mining. In this work, we establish a queueing perspective in process mining to address the online delay prediction problem, which refers to the time that the execution of an activity for a running instance of a service process is delayed due to queueing effects. We present predictors that treat queues as first-class citizens and either enhance existing regression-based techniques for process mining or are directly grounded in queueing theory. In particular, our predictors target multi-class service processes, in which requests are classified by a type that influences their processing. Further, we introduce queue mining techniques that derive the predictors from event logs recorded by an information system during process execution. Our evaluation based on large real-world datasets, from the telecommunications and financial sectors, shows that our techniques yield accurate online predictions of case delay and drastically improve over predictors neglecting the queueing perspective.
International Conference on the Integration of CP, AI, and OR, CPAIOR2020.
Abstract
The recent emergence of novel hardware platforms, such as quantum computers and Digital/CMOS annealers, capable of solving combinatorial optimization problems has spurred interest in formulating key problems as Ising models, a mathematical abstraction shared by a number of these platforms. In this work, we focus on constrained clustering, a semi-supervised learning task that involves using limited amounts of labelled data, formulated as constraints, to improve clustering accuracy. We present an Ising modeling framework that is flexible enough to support various types of constraints and we instantiate the framework with two common types of constraints: pairwise instance-level and partition-level. We study the proposed framework, both theoretically and empirically, and demonstrate how constrained clustering problems can be solved on a specialized CMOS annealer. Empirical evaluation across eight benchmark sets shows that our framework outperforms the state-of-theart heuristic algorithms and that, unlike those algorithms, it can solve problems that involve combinations of constraint types. We also show that our framework provides high quality solutions orders of magnitudes more quickly than a recent constraint programming approach, making it suitable for mainstream data mining tasks.
International Conference on Process Mining, ICPM2019
Abstract
Discovery plays a key role in data-driven analysis of business processes. The vast majority of contemporary discovery algorithms aims at the identification of control-flow constructs. The increase in data richness, however, enables discovery that incorporates the context of process execution beyond the control-flow perspective. A "control-flow first" approach, where context data serves for refinement and annotation, is limited and fails to detect fundamental changes in the control-flow that depend on context data. In this work, we thus propose a novel approach for combining the control-flow and data perspectives under a single roof by extending inductive process discovery. Our approach provides criteria under which context data, handled through unsupervised learning, take priority over control-flow in guiding process discovery. The resulting model is a process tree, in which some operators carry data semantics instead of control-flow semantics. We evaluate the approach using synthetic and real-world datasets and show that the resulting models are superior to state-of-the-art discovery methods in terms of measures that are based on multi perspective alignments.
International Conference on Automated Planning and Scheduling, ICAPS2019
Keywords: Scheduling; Learning; Constraint programming; Petri nets
Abstract
A significant challenge in declarative approaches to scheduling is the creation of a model: the set of resources and their capacities and the types of activities and their temporal and resource requirements. In practice, such models are developed manually by skilled consultants and used repeatedly to solve different problem instances. For example, in a factory, the model may be used each day to schedule the current customer orders. In this work, we aim to automate the creation of such models by learning them from event data. We introduce a novel methodology that combines process mining, timed Petri nets (TPNs), and constraint programming (CP). The approach learns a sub-class of TPN from event logs of executions of past schedules and maps the TPN to a broad class of scheduling problems. We show how any problem of the scheduling class can be converted to a CP model. With new instance data (e.g., the day’s orders), the CP model can then be solved by an off-the-shelf solver. Our approach provides an end-to-end solution, going from event logs to model-based optimal schedules. To demonstrate the value of the methodology we conduct experiments in which we learn and solve scheduling models from two types of data: logs generated from job-shop scheduling benchmarks and real-world event logs from an outpatient hospital.
AAAI Conference on Artificial Intelligence, AAAI2019 (16% acceptance rate)
Abstract
Time prediction is an essential component of decision making in various Artificial Intelligence application areas, including transportation systems, healthcare, and manufacturing. Predictions are required for efficient resource allocation and scheduling, optimized routing, and temporal action planning. In this work, we focus on time prediction in congested systems, where entities share scarce resources. To achieve accurate and explainable time prediction in this setting, features describing system congestion (e.g., workload and resource availability), must be considered. These features are typically gathered using process knowledge, (i.e., insights on the interplay of a system’s entities). Such knowledge is expensive to gather and may be completely unavailable. In order to automatically extract such features from data without prior process knowledge, we propose the model of congestion graphs, which are grounded in queueing theory. We show how congestion graphs are mined from raw event data using queueing theory based assumptions on the information contained in these logs. We evaluate our approach on two real-world datasets from healthcare systems where scarce resources prevail: an emergency department and an outpatient cancer clinic. Our experimental results show that using automatic generation of congestion features, we get an up to 23% improvement in terms of relative error in time prediction, compared to common baseline methods. We also detail how congestion graphs can be used to explain delays in the system.
CAiSE2018, (21% acceptance rate)
Abstract
Information systems record the execution of transactions as part of business processes in event logs. Process mining analyses such event logs, e.g., by discovering process models. Recently, various discovery algorithms have been proposed, each with specific advantages and limitations. In this work, we argue that, instead of relying on a single algorithm, the outcomes of different algorithms shall be fused to combine the strengths of individual approaches. We propose a general framework for such fusion and instantiate it with two new discovery algorithms: The Exhaustive Noise-aware Inductive Miner (exNoise), which, exhaustively searches for model improvements; and the Adaptive Noise-aware Inductive Miner (adaNoise), a computationally tractable version of exNoise. For both algorithms, we formally show that they outperform each of the individual mining algorithms used by them. Our empirical evaluation further illustrates that fusion-based discovery yields models of better quality than state-of-the-art approaches.
CAiSE2018, (21% acceptance rate)
Keywords: Process discovery; Log pre-processing; Log sampling
Abstract
With the increasing availability of business process related event logs, the scalability of techniques that discover a process model from such logs becomes a performance bottleneck. In particular, exploratory analysis that investigates manifold parameter settings of discovery algorithms, potentially using a software-as-a-service tool, relies on fast response times. However, common approaches for process model discovery always parse and analyse all available event data, whereas a small fraction of a log could have already led to a high-quality model. In this paper, we therefore present a framework for process discovery that relies on statistical pre-processing of an event log and significantly reduce its size by means of sampling. It thereby reduces the runtime and memory footprint of process discovery algorithms, while providing guarantees on the introduced sampling error. Experiments with two public real-world event logs reveal that our approach speeds up state-of-the-art discovery algorithms by a factor of up to 20 .
BPM2017, (13% acceptance rate; best paper award).
Abstract
Analysing performance of business processes is an important vehicle to improve their operation. Specifically, an accurate assessment of sojourn times and remaining times enables bottleneck analysis and resource planning. Recently, methods to create respective performance models from event logs have been proposed. These works are severely limited, though: They either consider control-flow and performance information separately, or rely on an ad-hoc selection of temporal relations between events. In this paper, we introduce the Temporal Network Representation (TNR) of a log, based on Allen’s interval algebra, as a complete temporal representation of a log, which enables simultaneous discovery of control-flow and performance information. We demonstrate the usefulness of the TNR for detecting (unrecorded) delays and for probabilistic mining of variants when modelling the performance of a process. In order to compare different models from the performance perspective, we develop a framework for measuring performance fitness. Under this framework, we provide guarantees that TNR-based process discovery dominates existing techniques in measuring performance characteristics of a process. To illustrate the practical value of the TNR, we evaluate the approach against three real-life datasets. Our experiments show that the TNR yields an improvement in performance fitness over state-of-the-art algorithms.
BPM2017, (13% acceptance rate)
Keywords: Predictive process monitoring; Inter-case features; Bi-dimensional feature encoding
Abstract
Predictive process monitoring is concerned with predicting measures of interest for a running case (e.g., a business outcome or the remaining time) based on historical event logs. Most of the current predictive process monitoring approaches only consider intra-case information that comes from the case whose measures of interest one wishes to predict. However, in many systems, the outcome of a running case depends on the interplay of all cases that are being executed concurrently. For example, in many situations, running cases compete over scarce resources. In this paper, following standard predictive process monitoring approaches, we employ supervised machine learning for prediction. In particular, we present a method for feature encoding of process cases that relies on a bi-dimensional state space representation: the first dimension corresponds to intra-case dependencies, while the second dimension reflects inter-case dependencies to represent shared information among running cases. The inter-case encoding derives features based on the notion of case types that can be used to partition the event log into clusters of cases that share common characteristics. To demonstrate the usefulness and applicability of the method, we evaluated it against two real-life datasets coming from an Israeli emergency department process, and an open dataset of a manufacturing process.
BPM2016, (17% acceptance rate)
Abstract
Operational process models such as generalised stochastic Petri nets (GSPNs) are useful when answering performance queries on business processes (e.g. ‘how long will it take for a case to finish?’). Recently, methods for process mining have been developed to discover and enrich operational models based on a log of recorded executions of processes, which enables evidence-based process analysis. To avoid a bias due to infrequent execution paths, discovery algorithms strive for a balance between over-fitting and under-fitting regarding the originating log. However, state-of-the-art discovery algorithms address this balance solely for the control-flow dimension, neglecting possible over-fitting in terms of performance annotations. In this work, we thus offer a technique for performance-driven model reduction of GSPNs, using structural simplification rules. Each rule induces an error in performance estimates with respect to the original model. However, we show that this error is bounded and that the reduction in model parameters incurred by the simplification rules increases the accuracy of process performance prediction. We further show how to find an optimal sequence of applying simplification rules to obtain a minimal model under a given error budget for the performance estimates. We evaluate the approach with a real-world case in the healthcare domain, showing that model simplification indeed yields significant improvements in time prediction accuracy.
BPM2016, (17% acceptance rate)
Keywords: Process mining; Conformance checking; Model repair; Log repair
Abstract
While models and event logs are readily available in modern organizations, their quality can seldom be trusted. Raw event recordings are often noisy, incomplete, and contain erroneous recordings. The quality of process models, both conceptual and data-driven, heavily depends on the inputs and parameters that shape these models, such as domain expertise of the modelers and the quality of execution data. The mentioned quality issues are specifically a challenge for conformance checking. Conformance checking is the process mining task that aims at coping with low model or log quality by comparing the model against the corresponding log, or vice versa. The prevalent assumption in the literature is that at least one of the two can be fully trusted. In this work, we propose a generalized conformance checking framework that caters for the common case, when one does neither fully trust the log nor the model. In our experiments we show that our proposed framework balances the trust in model and log as a generalization of state-of-the-art conformance checking techniques.
CAiSE2016, (17% acceptance rate)
Keywords: RTLS data; Business processes; Optimal matching; Knowledge-driven
Abstract
Process mining is a rapidly developing field that aims at automated modeling of business processes based on data coming from event logs. In recent years, advances in tracking technologies, e.g., Real-Time Locating Systems (RTLS), put forward the ability to log business process events as location sensor data. To apply process mining techniques to such sensor data, one needs to overcome an abstraction gap, because location data recordings do not relate to the process directly. In this work, we solve the problem of mapping sensor data to event logs based on process knowledge. Specifically, we propose interactions as an intermediate knowledge layer between the sensor data and the event log. We solve the mapping problem via optimal matching between interactions and process instances. An empirical evaluation of our approach shows its feasibility and provides insights into the relation between ambiguities and deviations from process knowledge, and accuracy of the resulting event log.
BPM2015, (18% acceptance rate)
Keywords: Schedule process; Parallel task; Queueing network; Queueing station; Schedule transition
Abstract
The performance of scheduled business processes is of central importance for services and manufacturing systems. However, current techniques for performance analysis do not take both queueing semantics and the process perspective into account. In this work, we address this gap by developing a novel method for utilizing rich process logs to analyze performance of scheduled processes. The proposed method combines simulation, queueing analytics, and statistical methods. At the heart of our approach is the discovery of an individual-case model from data, based on an extension of the Colored Petri Nets formalism. The resulting model can be simulated to answer performance queries, yet it is computational inefficient. To reduce the computational cost, the discovered model is projected into Queueing Networks, a formalism that enables efficient performance analytics. The projection is facilitated by a sequence of folding operations that alter the structure and dynamics of the Petri Net model. We evaluate the approach with a real-world dataset from Dana-Farber Cancer Institute, a large outpatient cancer hospital in the United States.
CAiSE2015, (13% acceptance rate)
Keywords: Service time; Service process; Service policy; Schedule process; Process execution
Abstract
Service processes, for example in transportation, telecommunications or the health sector, are the backbone of today’s economies. Conceptual models of such service processes enable operational analysis that supports, e.g., resource provisioning or delay prediction. Automatic mining of such operational models becomes feasible in the presence of event-data traces. In this work, we target the mining of models that assume a resource-driven perspective and focus on queueing effects. We propose a solution for the discovery and validation problem of scheduled service processes - processes with a predefined schedule for the execution of activities. Our prime example for such processes are complex outpatient treatments that follow prior appointments. Given a process schedule and data recorded during process execution, we show how to discover Fork/Join networks, a specific class of queueing networks, and how to assess their operational validity. We evaluate our approach with a real-world dataset comprising clinical pathways of outpatient clinics, recorded by a real-time location system (RTLS). We demonstrate the value of the approach by identifying and explaining operational bottlenecks.
BPM2014, (17% acceptance rate)
Keywords: Random forest; Linear discriminant analysis; Multinomial logistic regression; Service process; Data mining method
Abstract
In service processes, as found in the telecommunications, financial, or healthcare sector, customers compete for the scarce capacity of service providers. For such processes, performance analysis is important and it often targets the time that customers are delayed prior to service. However, this wait time cannot be fully explained by the load imposed on service providers. Indeed, it also depends on resource scheduling protocols, which determine the order of activities that a service provider decides to follow when serving customers. This work focuses on automatically learning resource decisions from events. We hypothesize that queueing information serves as an essential element in mining such protocols and hence, we utilize the queueing perspective of customers in the mining process. We propose two types of mining techniques: advanced classification methods from data mining that include queueing information in their explanatory features and heuristics that originate in queueing theory. Empirical evaluation shows that incorporating the queueing perspective into mining of scheduling protocols improves predictive power.
CAiSE2014, (18% acceptance rate)
Keywords: Delay prediction; Process mining; Queueing theory; Queue mining
Abstract
Information systems have been widely adopted to support service processes in various domains, e.g., in the telecommunication, finance, and health sectors. Information recorded by systems during the operation of these processes provides an angle for operational process analysis, commonly referred to as process mining. In this work, we establish a queueing perspective in process mining to address the online delay prediction problem, which refers to the time that the execution of an activity for a running instance of a service process is delayed due to queueing effects. We present predictors that treat queues as first-class citizens and either enhance existing regression-based techniques for process mining or are directly grounded in queueing theory. In particular, our predictors target multi-class service processes, in which requests are classified by a type that influences their processing. Further, we introduce queue mining techniques that derive the predictors from event logs recorded by an information system during process execution. Our evaluation based on large real-world datasets, from the telecommunications and financial sectors, shows that our techniques yield accurate online predictions of case delay and drastically improve over predictors neglecting the queueing perspective.
BPM Workshops, 2015
Keywords: Quene; Business process; Statistical methods; Uncertainty
Abstract
Detecting and measuring resource queues is central to business process optimization. Queue mining techniques allow for the identification of bottlenecks and other process inefficiencies, based on event data. This work focuses on the discovery of resource queues. In particular, we investigate the impact of available information in an event log on the ability to accurately discover queue lengths, i.e. the number of cases waiting for an activity. Full queueing information, i.e. timestamps of enqueueing and exiting the queue, makes queue discovery trivial. However, often we see only the completions of activities. Therefore, we focus our analysis on logs with partial information, such as missing enqueueing times or missing both enqueueing and service start times. The proposed discovery algorithms handle concurrency and make use of statistical methods for discovering queues under this uncertainty. We evaluate the techniques using real-life event logs. A thorough analysis of the empirical results provides insights into the influence of information levels in the log on the accuracy of the measurements.
BPM Workshops, 2014
Keywords: Modern business process; Queue mining; Snapshot principle; Operational process mining; Real-life event logs
Abstract
Modern business processes are supported by information systems that record process-related events into event logs.
Working Paper, 2020
Working Paper, 2020
Working Paper, 2020
Working Paper, 2020
Working Paper, 2020
Submitted to Renewable Energy, 2020
Working Paper, 2020
Working Paper, 2020